CREATIVE PRE-UNIVERSITY COLLEGE KARKALA

Sapthagiri Campus, Kanangi Road, Hirgana - 576 117

2023-24 II PUC ANNUAL EXAMINATION

CHEMISTRY

PART – A

I. Select the correct option from the given choices:

- 1. If the process of dissolution of a solid in liquid is an endothermic, its solubility:
 - a) decreases with increase in temperature b) remains same at all temperature
 - c) increase with increase in temperature d) increase with decrease in temperature

Ans : c) increase with increase in temperature

- 2. When the concentration of electrolytic solution approaches zero, the resulting molar conductivity is known as:
 - a) specific conductance

b) resistivity

d) limiting molar conductivity

b) conductivity

Ans : d) limiting molar conductivity

- 3. During discharging of lead storage battery the correct half-cell reaction is;
 - a) At anode, Pb is converted into PbO₂
 - b) At anode, Pb is converted into PbSO₄
 - c) At anode, PbO_2 is converted into $PbSO_4$
 - d) At cathode, Pb is converted into PbSO₄

Ans : b) At anode, Pb is converted into PbSO4

- 4. The catalyst in a chemical reaction provides an alternate pathway or reaction mechanism by decreasing;
 - a) Activation energy
 - c) Normal energy of reacting species
- b) Kinetic energy
- d) Potential energy

Ans : a) Activation energy N FOUNDATION, MOODBIDRI (R)

5. Which of the following pair of metal oxides are amphoteric?

```
a) V_2O_5, Cr_2O_3 b) Mn_2O_7, CrO_3 c) V_2O_5, V_2O_4 d) CrO_5, V_2O_5
```

Ans: a) V_2O_5 , Cr_2O_3

- 6. The correct IUPAC name of [Pt(NH₃)₂Cl₂] is ;
 - a) Diamminedichloridoplatinum (II) b) Dichloridodiammineplatinum (0) c) Dichloridodiammineplatinate (II)
 - d) Diamminedichloridoplatinate (0)

Ans : a) Diamminedichloridoplatinum (II)

CREATIVE EDUCATION FOUNDATION KARKALA

$(15 \times 1 = 15)$

	,					
	Ans: a) Enantiom	ers				
8.	Anisole on treatment with CH ₃ Cl in the presence of anhydrous AlCl ₃ gives ;					
	a) Toluene		b) o – Chloroanisol	e		
	c) ortho and para-	methylanisoles	d) p – chloroanisolo	2		
	Ans : c) ortho and	para-methylanisoles				
9.	The enzyme which	can catalyse the conve	rsion of glucose to eth	anol is ;		
	a) Invertase	b) Maltase	c) Zymase	d) Sucrase		
	Ans : c) Zymase					
10.	Nucleophilic attack	on carbonyl carbon at	om changes its hybridi	zation from ;		
	a) sp to sp^2	b) sp^2 to sp^3	c) sp ³ to sp ²	d) sp to sp^3		
	Ans : b) sp ² to sp ³					
11.	Decarboxylating re	agent is a mixture of				
	a) Alc. $KOH + H_2$	O ₂	b) NaOH + CO ₂			
	c) NaOH + CaO		d) Conc. HCl + Zn	$\mathbb{C}l_2$		
	Ans : c) NaOH + (CaO				
12.	To prepare p-Nitroa	aniline as a major produ	<mark>act</mark> fro <mark>m anil</mark> ine, the ar	nino group is protecte		
12.	To prepare p-Nitroa a) Acetylation	aniline as a major produ b) Alkylation	c) Saponification	nino group is protecte d) Sulphonation		
12.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylatio	aniline as a major production	act from aniline, the an c) Saponification	nino group is protecte d) Sulphonation		
12.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation	aniline as a major production b) Alkylation	ct from aniline, the an c) Saponification	nino group is protecte d) Sulphonation		
12. 13.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl2 and HCl	aniline as a major production b) Alkylation on separate the mixture o	ct from aniline, the ar c) Saponification f methylamine and dir b) CcHcSOcCl and	nino group is protecte d) Sulphonation nethylamine are ;		
12. 13.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylatio The reagent used to a) CHCl ₃ and HCl c) CcHcSO ₂ Cl and	aniline as a major production b) Alkylation on separate the mixture of HCl	ct from aniline, the ar c) Saponification f methylamine and din b) C ₆ H ₅ SO ₂ Cl and d) CHCl ₂ and KOH	nino group is protecte d) Sulphonation nethylamine are ; KOH		
12. 13.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl ₃ and HCl c) C ₆ H ₅ SO ₂ Cl and	aniline as a major production b) Alkylation on separate the mixture of HCl	ict from aniline, the an c) Saponification f methylamine and din b) $C_6H_5SO_2Cl$ and d) CHCl ₃ and KOH	nino group is protecte d) Sulphonation nethylamine are ; KOH		
12.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl ₃ and HCl c) C ₆ H ₅ SO ₂ Cl and Ans : b) C ₆ H ₅ SO ₂ C	aniline as a major produ b) Alkylation on separate the mixture of HCl Cl and KOH	ict from aniline, the ar c) Saponification f methylamine and din b) C ₆ H ₅ SO ₂ Cl and d) CHCl ₃ and KOH	nino group is protecte d) Sulphonation nethylamine are ; KOH		
12.13.14.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl ₃ and HCl c) C ₆ H ₅ SO ₂ Cl and Ans : b) C ₆ H ₅ SO ₂ C	aniline as a major produ b) Alkylation on separate the mixture of HCl Cl and KOH	Ict from aniline, the an c) Saponification of methylamine and din b) C ₆ H ₅ SO ₂ Cl and d) CHCl ₃ and KOH	nino group is protecte d) Sulphonation nethylamine are ; KOH		
12.13.14.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl ₃ and HCl c) C ₆ H ₅ SO ₂ Cl and Ans : b) C ₆ H ₅ SO ₂ Cl The carbohydrate w a) Starch	aniline as a major produ b) Alkylation on separate the mixture of HCl Cl and KOH which is also known as a b) Sucrose	Ict from aniline, the an c) Saponification f methylamine and din b) C ₆ H ₅ SO ₂ Cl and d) CHCl ₃ and KOH animal starch and store c) Glycogen	nino group is protecte d) Sulphonation nethylamine are ; KOH ed in animal body is ; d) Cellulose		
12.13.14.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) $CHCl_3$ and HCl_3 c) $C_6H_5SO_2Cl$ and Ans : b) $C_6H_5SO_2Cl$ The carbohydrate w a) Starch Ans : c) Glycogen	aniline as a major produ b) Alkylation on separate the mixture of HCl Cl and KOH which is also known as b) Sucrose	<pre>ict from aniline, the ar c) Saponification f methylamine and din b) C₆H₅SO₂Cl and d) CHCl₃ and KOH animal starch and stor- c) Glycogen</pre>	nino group is protecte d) Sulphonation nethylamine are ; KOH ed in animal body is ; d) Cellulose		
12.13.14.15.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl ₃ and HCl c) C ₆ H ₅ SO ₂ Cl and Ans : b) C ₆ H ₅ SO ₂ Cl The carbohydrate w a) Starch Ans : c) Glycogen Which vitamin defi	aniline as a major produ b) Alkylation on separate the mixture of HCl Cl and KOH which is also known as b) Sucrose	animal starch and store c) Glycogen	nino group is protecte d) Sulphonation nethylamine are ; KOH ed in animal body is ; d) Cellulose		
12.13.14.15.	To prepare p-Nitroa a) Acetylation Ans : a) Acetylation The reagent used to a) CHCl ₃ and HCl c) C ₆ H ₅ SO ₂ Cl and Ans : b) C ₆ H ₅ SO ₂ Cl The carbohydrate w a) Starch Ans : c) Glycogen Which vitamin defi a) Vitamin B ₁	aniline as a major produ b) Alkylation on separate the mixture of HCl Cl and KOH which is also known as a b) Sucrose ciency causes the disea b) Vitamin B ₂	 act from aniline, the arc, Saponification f methylamine and din b) C₆H₅SO₂Cl and d) CHCl₃ and KOH animal starch and store c) Glycogen 	nino group is protecte d) Sulphonation nethylamine are ; KOH ed in animal body is ; d) Cellulose d) Vitamin B ₁₂		

Units

 II. Fill in the blanks by choosing the appropriate [ionic charge, Grignard reagent, C₆H₅N⁺₂Cl⁻ 16. The number of moles of solute present in one 	word from those given in the brackets : , Collision frequency, Molality, Molarity] e kilogram of the solvent is called	$(5 \times 1 = 5)$
Ans : Molality		
17. The number of collisions per second per unit	volume of the reaction mixture is known as _	·
Ans : Collision frequency		
18. Transition metals form large number of comp	plex compounds due to high	
Ans : ionic charge		
19. The common name of alkyl magnesium halic	le is	
Ans : Grignard reagent		
20. The formula of benzenediazonium chloride is	s	
Ans : C ₆ H ₅ N ₂ ⁺ Cl ⁻		
III. Answer any three of the following. Each ques	PART – B tion carries 2 marks:	$(3 \times 2 = 6)$
21. What type of deviation from Raoult's law acetone are mixed together? Mention the PAns :	is observed, when equal volume of ethanol ceason for it.	and (2)
Positive deviation from Raoult's law. Because: Force of attraction between ethan	ol and acetone molecules is less than that o	f ethanol –
ethanol & acetone – acetone molecules.	ATIVE	
22. Mention any two differences between orde	er and molecularity of a reaction.	(2)
Molecularity	Order	
It can be calculated by adding the molecules of the slowest step in the reaction mechanism	It can be determined experimentally only and cannot be calculated	ł
It cannot be zero or fraction.	It can be zero as well as fraction.	
23. a) What is spectrochemical series? Ans :	ler of increasing field strength	(1)
b) Between [Co(en) ₃] ³⁺ and [Co(NH ₃) ₆] ³⁺ o Ans: [Co(en) ₃] ³⁺	complex ions which is more stable?	(1)
REATIVE EDUCATION FOUNDATION	KARKALA HASSAN KAR	KALA UDU

Ans :
Aldehydes and ketones having at least one methyl group linked to the carbonyl carbon atom (methyl ketones) are oxidised by sodium hypohalite to sodium salts of corresponding earboxylic acids having one carbon atom less than that of carbonyl compound. The methyl group is converted to haloform.

$$R_{-C-CH_{3}}^{-1} \xrightarrow{N=0X} R_{-C-ON_{4}}^{-1} + CHX_{3} (X-CLB, I)$$

26. Name two hormones which regulate the glucose level in the blood.
Ans :
Insulin
Glucagon
PART - C
IV. Answer any three of the following. Each question carries 3 marks : (3 × 3 = 9)
27. Write the balanced chemical equations in the manufacture of potassium dichromate from
chromite ore. (3)
Ans :
Step 1: 4FeCr₂O₄ + 8Na₂CO₃ + 7O₂ \longrightarrow 8Na₂CrO₄ + 2Fe₂O₃ + 8CO₂
Step 2: 2Na₂CrO₄ + 2H⁺ \longrightarrow Na₃Cr₂O₇ + 2Na⁺ + H₁O
Step 3: Na₂Cr₂O₇ + 2KCl \longrightarrow K₃Cr₂O₇ + 2Na⁺Cl
28. a) give a reason for each of the following :
i) The spin only magnetic moment of Se^{3*} is zero. (1)
Ans :
due to the absence of unpaired electrons
ii) Alloys are readily formed by transition metals.
b) Write the structure of manganate ion (MnO²₄).
Ans :
 $\int_{O}^{+} \int_{O}^{+} O$.

24. Write the IUPAC name of product obtained when ethylbromide reacts with sodium iodide in dry acetone. Name the reaction.

Ans :

Iodoethane, Finkelstein reaction.

25. Explain Haloform reaction with chemical equation.

(2)

(2)

29. What is Lanthanoid Contraction? Mention two consequences of it.

Ans :

Lanthanoid contraction:

Regular decrease (contraction) in the atomic and ionic radii of lanthanoids with increasing atomic number is known as lanthanoid contraction.

Consequences:

1. The radii of 3^{rd} row transition series elements are almost similar to that of 2^{nd} row transition series elements.

2. The separation of lanthanoids in pure state becomes difficult.

30. a) Draw the geometrical isomers of $\lceil CoCl_2(en)_2 \rceil$.

Ans :

Cis isomer

trans isomer

b) Give an example for ambidentate ligand. Ans : SCN⁻

31. On the basis of Valence Bond Theory [VBT], explain geometry, hybridisation and magnetic property of $\left\lceil Co(NH_3)_6 \right\rceil^{3+}$ ion. [Atomic number of cobalt is 27) (3)

Ans: $[Co(NH_3)_6]^{3+}$ Central metal ion : Co^{3+} Electronic configuration of Co³⁺: [Ar] 3d⁶ Orbitals of Co^{3+} ion $\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$)N. MOODBIDRI (R) 4p 3d4s d²sp³ hybridised Orbitals d²sp³ hybrid of Co^{3+} ion 3d $[Co(NH_3)_6]^{3+}$ 3d six pairs of electrons inner orbital complex or from six NH₃ molecules low spin complex Magnetic property : Diamagnetic Hybridisation : d^2sp^3 Geometry : Octahedral Nature of complex : Inner orbital complex or low spin complex or spin paired complex

(2)

(1)

32. a) Draw the energy level diagram for the splitting of d- orbitals in an octahedral crystal field.

35. Write the anodic, cathodic and overall reactions of corrosion of iron occurs in the presence of water and air. (3)

Ans :

Anode: 2Fe (s) \longrightarrow 2Fe²⁺ (aq) + 4e⁻ Cathode: O₂(g) + 4H⁺(aq) + 4e⁻ \longrightarrow 2H₂O(l)

Overall reaction: $2Fe(s) + O_2(g) + 4H^+(aq) \longrightarrow 2Fe^{2+}(aq) + 2H_2O(l)$

36. Derive integrated rate equation for rate constant of a zero order reaction.

Ans :

Zero order reaction means that the rate of the reaction is proportional to zero power of the concentration of reactants.

Consider the reaction, $R \longrightarrow P$

$$Rate = -\frac{d[R]}{dt} = k[R]^{0} \qquad [R]^{0} = 1$$
$$Rate = -\frac{d[R]}{dt} = k$$

$$d[R] = -kdt$$

Integrating both sides

[R] = -kt + I - - - -(1)

Where, I is the constant of integration.

At t = 0, the concentration of the reactant $R = [R]_0$, Where $[R]_0$ is the initial concentration of the reactant.

Equation (1) becomes

$$[\mathbf{R}]_0 = -\mathbf{k} \times \mathbf{0} + \mathbf{I}$$

$$I = [R]_0$$

Substituting value of I in equation (1)

$$[R] = -kt + [R]_0 - - - -(2)$$

kt = [R]_-[R]_- - - -(3)

$$kt = [R]_0 - [R] - - - -(3)$$

 $k = \frac{[R]_0 - [R]}{4} EDUC(4) ION FOUNDATION, MOODBIDRI (R)$

Equation (4) is the rate constant expression for zero order reaction.

PART - D

VI . Answer any four of the following. Each question carries 5 marks: $(4 \times 5 = 20)$

37. a) Write the mechanism for the conversion of methyl chloride to methyl alcohol . Mention the order. (3)

Ans :

It follows second order kinetics.

CREATIVE EDUCATION FOUNDATION KARKALA

(3)

Step 3: Formation of ethene by elimination of a proton.

$$H - C - C^{+} = C^{+} + H^{+}$$

$$H - C - C^{+} + H^{+}$$

$$H - H^{+} + H^{+}$$

$$H - H^{+}$$

$$H^{+}$$

$$H^{+}$$

$$H^{+}$$

$$H^{+}$$

$$H^{+}$$

CREATIVE EDUCATION FOUNDATION KARKALA

Our Academic Units
HASSAN | KARKALA | UDUPI

Ans:

$$A = \begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \end{array} C = N - NH_{2} \qquad B = CH_{3}CH_{2}CH_{3} \\ Hydrazone \qquad Propane \end{array}$$

c) Write any one reagent used to distinguish between aldehyde and ketone. Ans :

Tollens' reagent

- 41. a) When methyl magnesium iodine reacts with dry ice forms an intermediate, which on acidification gives compound 'A'
 - i) Write the equation for the above chemical reaction.

Ans:

CH₃MgI + 0=C=0 $\xrightarrow{\text{Dry ether}}$ H₃C \xrightarrow{O} $\xrightarrow{H_3O^+}$ CH₃COOH

ii) Write the IUPAC name of compound 'A".

Ans:

Ethanoic acid

b) Between acetic acid and monochloroacetic acid, which is more acidic? Give reason. (2)

Ans:

Monochloroacetic acid is more acidic

Reason: Chlorine in monochloroacetic acid increase the acidity by stabilising the conjugate base.

42. a) Write the chemical equations involved in the Gabriel phthalimide synthesis of methanamine.

Ans:

b) Explain the coupling reaction of benzene diazonium chloride with phenol using chemical equation. (2)

Ans:

Benzene diazonium chloride reacts with phenol to give azo dyes. These reactions are called coupling reactions.

(1)

(2)

(1)

(3)

b) i) What are essential amino acids?

Ans:

Amino acids which cannot be synthesised in the body and must be obtained through diet, are known as essential amino acids.

ii) Give an example fo	(1)	
Ans:		
Keratin, myosin.		
c) Name the nitrogenou	us base present in DNA but not in RNA.	(1)

c) Name the nitrogenous base present in DNA but not in RNA.

Ans:

Thymine

PART – E

VII. Answer any three of the following. Each question carries 3 marks: $(3 \times 3 = 9)$

44. Calculate the mole fraction of benzene in solution containing 30% by mass in carbon tetrachloride.

[Given Molar mass of Benzene = 78 g/mol, Molar mass of carbon tetrachloride = 154 g/mol] Ans:

$$X_{C_6H_6} = \frac{n_{C_6H_6}}{n_{C_6H_6} + n_{CCl_4}}$$

30 g benzene 70 g CCl₄

$$M_{C_6H_6} = 78 \text{ g/mol} \qquad M_{CCl_4} = 154 \text{ g/mol}$$

$$n_{C_6H_6} = \frac{30}{78} \qquad n_{CCl_4} = \frac{70}{154}$$

$$= 0.384 \qquad = 0.454$$

$$X_{C_6H_6} = \frac{0.384}{0.384 + 0.454}$$

$$= \frac{0.384}{0.838} = 0.458$$

Our Academic Units HASSAN | KARKALA | UDUPI

(1)

45. 1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene by 0.40 K. The freezing point depression constant of benzene is 5.12 K kg mol⁻¹. Find the molar mass of the solute.

Ans:

 $W_{2} = 1.00 \text{ g} \quad W_{1} = 50 \text{ g}$ $\Delta T_{f} = 0.40 \text{ K} \qquad K_{f} = 5.12 \text{ K kg mol}^{-1}$ $M_{2} = \frac{K_{f} \times W_{2} \times 1000 \text{ g kg}^{-1}}{\Delta T_{f} \times W_{1}}$ $= \frac{5.12 \text{ K kg mol}^{-1} \times 1.00 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.40 \text{ K} \times 50 \text{ g}}$ $= \frac{5120}{20} = 256 \text{ g mol}^{-1}$

46. Calculate the emf of the cell in which the following reaction takes place:

 $Ni_{(s)} + 2Ag^{+}(0.002M) \rightarrow Ni^{2+}(0.160M) + 2Ag_{(s)}$ Given that $E_{cell}^{0} = 1.05V$ at 298 K. Ans: Given, $E_{cell}^{\circ} = 1.05 V$ $E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} \log \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$ $= 1.05 - \frac{0.059}{2} \log \frac{(0.160)}{(0.002)^{2}}$ $= 1.05 - \frac{0.059}{2} \log \left(\frac{(16 \times 10^{-2})}{(2 \times 10^{-3})^{2}}\right)$ = 1.05 - 0.0710= 0.979 V

47. A solution of $CuSO_4$ is electrolysed for 10 minutes with a current of 1.5 amperes. What is the

mass of copper deposited at the cathode? [Molar mass of copper = 63 g/mol. 1F = 96487C] Ans: $Q=I \times t$ $I = 1.5 \times 10 \times 60 = 900 \text{ C}$ $Cu^{2+} + 2e^- \rightarrow Cu(s)$ $2 \times 96487 \text{ C} \rightarrow 63 \text{ g}$ $900 \text{ C} \rightarrow ?$ $= \frac{900 \times 63}{2 \times 96487} = 0.2938 \text{ g}$

48. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g?

Ans:

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$
$$t = \frac{2.303}{1.15 \times 10^{-3}} \log \frac{5}{3}$$
$$= 2.002 \times 10^3 \times 0.2218$$
$$= 0.444 \times 10^3$$
$$= 444 \text{ s}$$

49. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. calculate the E_a of the reaction assuming that it does not change with temperature.

Ans:

$$\log \frac{k_2}{k_1} = \frac{Ea}{2.303 \text{ R}} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$
$$\log 4 = \frac{Ea}{2.303 \times 8.314} \left[\frac{313 - 293}{293 \times 313} \right]$$
$$0.6020 = \frac{Ea}{19.147} \left[\frac{20}{91709} \right]$$
$$Ea = \frac{0.6020 \times 19.147 \times 91709}{20} = 52854 \text{ J/mol}$$
$$= 52.854 \text{ kJ/mol}$$

DEPARTMENT OF CHEMISTRY

- ➢ Mr. Adarsha M K
- ➢ Mr. Vishwanath Math
- Mr. Yogisha
- Mr. Yogisha
 Mr. Mallikarjuna Rao G
- \blacktriangleright Mr. Veeresh S E
- Mr. Sujay B T
- Mr. Sathyanarayana
- Mr. Nagaraj Udupa
- ➢ Mr. Sunil Kumar S N

- Mr. Kantharaju K E
 - Mr. Ranjith B S
 - Mr. Akhilesh K R
- Mr. Manjunath
- Mrs. Spoorthi
- Mrs. Rashmi
- Mrs. Roopini
- ➢ Ms. Sharanya
- ➢ Mrs. Premalatha

CREATIVE EDUCATION FOUNDATION MOODBIDRI (R)

www.creativeedu.in

Phone No: 9019844492