CREATIVE LEARNING CLASSES KARKALA

Sapthagiri Campus, Kanangi Road, Hirgana - 576 117

REATIVE

## 2023-24 II PUC ANNUAL EXAMINATION BASIC MATHEMATICS

PART-A

I. Answer all the multiple choice questions :  $5 \times 1 = 5$ 1. If  $\mathbf{A} = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & -2 \end{vmatrix}$  and  $\mathbf{B} = \begin{vmatrix} 3 & -4 & -1 \\ 1 & 5 & -2 \end{vmatrix}$  the (A + B) is **a**)  $\begin{bmatrix} 4 & 2 & -3 \\ 0 & 8 & 4 \end{bmatrix}$  **b**)  $\begin{bmatrix} 4 & -2 & -3 \\ 0 & -8 & -4 \end{bmatrix}$  **c**)  $\begin{bmatrix} -4 & 2 & 3 \\ 0 & -8 & 4 \end{bmatrix}$  **d**)  $\begin{bmatrix} 4 & -2 & -3 \\ 0 & -8 & -4 \end{bmatrix}$ **Solution : Option : (b)**  $A + B = \begin{vmatrix} 1 & 2 & 4 \\ -1 & 3 & -2 \end{vmatrix} + \begin{vmatrix} 3 & -4 & -1 \\ 1 & 5 & -2 \end{vmatrix} = \begin{vmatrix} 4 & -2 & -3 \\ 0 & -8 & -4 \end{vmatrix}$ If  ${}^{n}C_{10} = {}^{n}C_{15}$  then n is 2. a) 25 b) 29 c) 24 d) 23 Solution : Option (a)  ${}^{n}C_{10} = {}^{n}C_{15} \Longrightarrow n = 10 + 15 = 25$ The probability of getting a black card from a pack of 52 cards is 3. **b**)  $\frac{1}{52}$ **c**)  $\frac{1}{4}$ **d**)  $\frac{1}{2}$ a)  $\frac{3}{4}$ Solution : Option (d)  $P(A) = \frac{26}{52} = \frac{1}{2}$ The value of  $4\cos^3 10^0 - 3\cos 10^\circ$  is 4. **a**)  $\frac{\sqrt{3}}{2}$  **b**)  $\frac{2}{\sqrt{2}}$ c)  $\frac{1}{\sqrt{3}}$ **d**)  $\frac{1}{2}$ Solution : Option (a)  $4\cos^3 10^\circ - 3\cos 10^\circ = \cos (3 \times 10^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}.$ **The value of**  $\int 4 \sec^2 x \, dx$  is 5. c) 4 tan x + c a) 4 sec x + cb)  $4 \sin x + c$ d) 4 cot x + c**Solution : Option (c)** 

1

 $\int 4 \sec^2 x \, dx = 4 \tan x + c$ 

.

### **II.** Match the following

6. i) The value of 
$$\begin{vmatrix} 3200 & 3201 \\ 3202 & 3203 \end{vmatrix}$$
 is a) 27

ii) If 
$${}^{5}P_{r} = 60$$
, then r is b) 12

.

iii) If 5: 20 = 3: x then the value of x is c)  $\frac{y}{x}$ 

iv) The value of 
$$\lim_{x \to 3} \left( \frac{x^3 - 27}{x - 3} \right)$$
 is d)  $\frac{x}{y}$ 

3.

### **Solution :**

i) 
$$\begin{vmatrix} 3200 & 3201 \\ 3202 & 3203 \end{vmatrix} = \begin{vmatrix} 3200 & 1 \\ 3202 & 1 \end{vmatrix} = 3200 - 3202 = -2$$
  
ii)  ${}^{5}P_{r} = 60 \Rightarrow$  for  $r = 3, 5 \times 4 \times 3 = 60. \therefore r =$   
iii)  $5: 20 = 3: x$   
 $\frac{5}{20} = \frac{3}{x} \Rightarrow x = 12$   
iv)  $\lim_{x \to 3} \left( \frac{x^{3} - 27}{x - 3} \right) = \lim_{x \to 3} \left( \frac{x^{3} - 3^{3}}{x - 3} \right) = 3 \times 3^{2} = 27$   
v)  $x^{2} - y^{2} = a^{2}$  then  $\frac{dy}{dx}$  is  
 $2x - 2y \cdot \frac{dy}{dx} = 0 \Rightarrow \frac{2x}{2y} = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{x}{y}$ 

# III. For question numbers 7 to 11 choose the appropriate answer from the brackets given below : $(5 \times 1 = 5)$

(56, 9, 
$$\frac{-3}{4}$$
, 1, 2, 4)  
7. If  $[2 \times 2] \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = [3]$  then the value of x is .....

2

CREATIVE EDUCATION FOUNDATION KARKALA

- 8. The number of triangles that can be formed from the 8 non collinear points is .....
- 9. The third proportional of 4 and 6 is .....

10. The value of 
$$\lim_{x\to 0} \left( \frac{\sin 4x}{\sin 2x} \right)$$
 is .....

11. The value of 
$$\int_{0}^{\pi/2} \sin 2x \, dx$$
 is .....

### Solution :

7. 
$$\begin{bmatrix} 2 & x & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}$$
$$2 + 4x + 4 = 3$$
$$4x = -3$$
$$x = \frac{-3}{4}$$

8. Number of triangles =  ${}^{8}C_{3} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$ 

9. 4:6::6:x

$$4x = 36 \Longrightarrow x = 9$$

10.  $\lim_{x \to 0} \frac{\sin 4x}{\sin 2x} = \lim_{x \to 0} \frac{4x}{2x} = 2$ 

11. 
$$\int_{0}^{\pi/2} \sin 2x = -\frac{\cos 2x}{2} \Big]_{0}^{\frac{\pi}{2}} = -\frac{1}{2} \Big[ \cos x - \cos 0 \Big] = \frac{-1}{2} \Big[ -1 - 1 \Big] = 1$$

- IV. Answer the following questions :
- 12. Negate : ~  $p \rightarrow q$

Solution : ~ (~p  $\rightarrow$ q) = ~p $\land$  ~q

$$(\because \sim (a \rightarrow b) = a \land \sim b)$$

13. If a : b = 2 : 3, b : c = 5 : 7 and c : d = 3 : then find a : d.

Solution:  $\frac{a}{d} = \frac{a}{b} \times \frac{b}{c} \times \frac{c}{d} \Longrightarrow \frac{a}{d} = \frac{2}{3} \times \frac{5}{7} \times \frac{3}{1} = \frac{10}{7}$ a: d = 10: 7  $5 \times 1 = 5$ 

14. If  $\tan A = \frac{1}{\sqrt{3}}$  the find  $\tan 2A$ . Solution :  $\tan A = y\sqrt{3} \Rightarrow A = 300$   $\tan 2A = \tan 60^{\circ} = \sqrt{3}$ 15. Differentiate  $3x^2 + 4y^2 = 10$  w.r.t.x. Solution :  $3x^2 + 4y^2 = 10$ Diff w.r.t.'x'  $6x + 8y \cdot \frac{dy}{dx} = 10 \Rightarrow \Rightarrow 8y \frac{dy}{dx} = -6x \Rightarrow \frac{dy}{dx} = \frac{-6x}{8y} = \frac{-3x}{4y}$ 16. Evaluate  $\int \left(x^2 - \frac{6}{x} + 5e^x\right) dx$ Solution :  $\int \left(x^2 - \frac{6}{x} + 5e^x\right) dx = \frac{x^3}{3} - 6\log x + 5e^x + c$ 

#### PART – B

### V)Answer any SIX questions

17. In how many ways can the letters of the word "HOPPER" be arranged ? Solution : HOPPER

$$n=6\ p=2$$

No. of ways 
$$=\frac{6!}{2!} = \frac{720}{2} = 360$$

18. Find the number of parallelograms that can be formed from the set of 6 parallel lines intersecting another set of 4 parallel lines.

**Solution :** m = 6 n = 4

Name of parallelograms = 
$${}^{m}C_{2} \times {}^{n}C_{2} = {}^{6}C_{2} \times {}^{4}C_{2} = \frac{6 \times 5}{2 \times 1} \times \frac{4 \times 3}{2 \times 1} = 15 \times 6 = 90$$

### 19. Two coins are tossed simultaneously. What is the probability of getting

a) Atleast one tail b) Atmost one tail

Solution :  $S = \{HH, HT, TH, TT\}$ 

a) p(atleast one tail) = 
$$\frac{3}{4}$$

b) P(atymost one tail) =  $\frac{3}{4}$ 

20. **Divide Rs. 6,000 in the ratio 3 : 4 : 5.** 

**Solution :** given ratio 3 : 4 : 5

Let the parts are 3x, 4x, 5x.

Given, 3x + 4x + 5x = 6,000

 $12x = 6000 \Longrightarrow x = 500$ 

 $1^{st} part = 3 \times 500 = 1500$ 

 $2^{nd} part = 4 \times 500 = 2000$ 

 $3^{rd}$  part =  $5 \times 500 = 2500$ 

21. 500 workers can finish a work in 8 days. How many workers will finish the same work in 5 days ?

Solution :

| Workers | Days |  |  |
|---------|------|--|--|
| 500     | 8    |  |  |
| X       | 5    |  |  |

Workers and days are in inverse proportion

$$\therefore \frac{500}{x} = \frac{5}{8}$$

$$5x = 500 \times 8$$

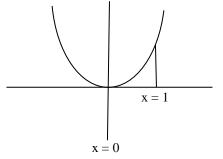
$$x = 800 \qquad \therefore \text{ No. of workers} = 800$$

22. For Rs. 512.50 due 6 months at 15% p.a. Find the true present value and discounted value of the bill.

**Solution :** 

F = Rs. 512.50  
t = 6 months = 0.5 years  
r = 0.15%  
Present value P = 
$$\frac{F}{1+tr} = \frac{512.50}{1+0.075} = Rs.476.74$$
  
DV = F(1 - tr)  
DV = 512.50 (1-0.075) = Rs. 474.06

23. Find the equation of the parabola given that its focus is (-4, 0) and directrix is x = 4.


**Solution :** Focus =(-4, 0)  $\Rightarrow$  a = 4 Equation is  $y^2 = -4ax \Rightarrow y^2 = -16x$ 

24. Find the axis and length of the latus rectum of the parabola  $x^2 = 16$  y.

- **Solution :**  $x^2 = 16y$ 4a = 16; a = 4Axis = y - axis $LLR = 4a = 4 \times 4 = 16$  units
- 25.  $\int \frac{4x+3}{2x^2+3x+5} dx$ Solution :  $\int \frac{4x+3}{2x^2+3x+5} dx$   $f(x) = 2x^2 + 3x + 5$  f'(x) = 4x + 3  $\int \frac{f'(x)}{f(x)} dx = \log(f(x)) + c$   $= \log(2x^2 + 2x + 5) + c$ 26. Evaluate  $\int_{0}^{3} \left(\frac{x+3}{x+2}\right) dx$ . Solution :  $\int_{0}^{3} \frac{x+3}{x+2} dx = \int_{0}^{3} \frac{x+2+1}{x+2} dx \Rightarrow \int_{0}^{3} \left(1 + \frac{1}{x+2}\right) dx$   $= x + \log(x+2)]_{0}^{3} = 3 + \log 5 - (0 + \log 2)$  $= 3 + \log 5 - \log 2$

27. Find the area enclosed by the curve y = x<sup>2</sup>. x – axis and the ordinates x = 0 and x = 1.
Solution:
y = x<sup>2</sup>. x = 0. x = 1

$$A = \int_{0}^{1} y \, dx \Rightarrow A = \int_{0}^{1} x^{2} \, dx$$
$$\Rightarrow \frac{x^{3}}{3} \Big]_{0}^{1} \Rightarrow A = \frac{1}{3}$$



6

PART - C

VI. Answer any FIVE of the following questions :  $5 \times 3 = 15$ 28. Solve : 3x + 2y = 8 and 4x - 3y = 5 by Cramer's rule. **Solution :** 3x + 2y = 84x - 3y = 5 $A = \begin{vmatrix} 3 & 2 \\ 4 & -3 \end{vmatrix} = -17$  $\Delta \mathbf{x} = \begin{vmatrix} 8 & 2 \\ 5 & -3 \end{vmatrix} = -34$  $\Delta y = \begin{vmatrix} 3 & 8 \\ 4 & 5 \end{vmatrix} = -17$  $x = \frac{\Delta x}{\Lambda} = \frac{-34}{-17} = 2$  $y = \frac{\Delta y}{\Delta} = \frac{-17}{-17} = 1$ 29. The difference between BD and TD on a certain sum of money due in 6 months is Rs. 27. Find the amount of the bill if the rate of interest is 6% p.a.

Solution : BD – TD = 27 BG = 27 t = 6 months = 0.05 years r = 0.06 BG = TD . tr 27 = TD . 0.5 × 0.06 TD = 900 BD – 900 = 27 BD = 927 F =  $\frac{BD \times TD}{BG} = \frac{927 \times 900}{27} \Rightarrow F = Rs.30,900$ 

7

30. A person invests Rs. 15,000 partly in 3% stock at 75 and partly in 6% stock at 125. If the income from both is Rs. 675. Find his investment in 2 types of stocks.

**Solution :** Money invested in 3% stock = x Money invested in 6% stock = 15,000 - x

Income 
$$I_1 = \frac{x \times 3}{75} = 0.04x$$
  
Income  $I_2 = \frac{(15,000 - x) \times 6}{125}$   
 $I_2 = 720 - 0.048x$   
 $I_1 + I_2 = 675$   
 $0.04x + 720 - 0.048x = 675$   
 $0.008x = 45$   
 $x = Rs. 5625$   
 $\therefore$  Money invested in 3% stock = Rs. 5625  
Money invested in 6% stock = 1500 - 5625 = Rs. 9375

31. The price of a T.V. set inclusive of sales tax of 9% is Rs. 13,407. Find its marked price. If the sales tax is increased to 13%, how much more does the customer pay for the T.V. ?

**Solution :** SP of T.V. = Rs. 13,407

SP = MP + ST% MP  

$$13,407 = x + \frac{9}{100} x$$
  
 $13,407 = 1.09x$   
MP = Rs. 12,300  
If sales tax is 13%  
Then SP = MP + ST% MP  
SP = 12,300 +  $\frac{13}{100}(12,300)$   
SP = **Rs. 13,899/-**  
**Find**  $\frac{dy}{dx}$ , given that x = a cos<sup>4</sup>  $\theta$ , y = a sin<sup>4</sup>  $\theta$ .

**Solution :**  $a \cos^4 \theta$   $y = a \sin^4 \theta$ 

32.

8

$$J(2x-1)(x-2) = J(25-1)(x-2) = J(2x-1)$$
$$= -\frac{\log(2x-1)}{2} + \log(x-3) + c$$
PART - D

VII. Answer any five questions :

35. Solve the linear equations by matrix method.

x + y - z = 1

 $\therefore \int \frac{x+2}{(2x-1)(x-2)} = \int \frac{x+2}{(25-1)(x-2)} = \int \frac{-1}{2x-1} + \frac{1}{x-3} dx$ 

# 3

 $x^2 + v^2 = 15^2$ 

 $v^2 = 15^2 - 12^2$ 

 $x^2 + y^2 = 15$ 

x = 3, B = 1

 $x = \frac{1}{2}, A = -1$ 

v = 9

33.

34. **Evaluate** 
$$\int \frac{x+2}{(2x-1)(x-3)} dx.$$

x + 2 = A(x - 3) + B(2x - 1)

Solution: 
$$\int \frac{x+2}{(2x-1)(x-3)} dx = \int \frac{A}{(2x-1)} + \frac{B}{(x-3)} dx$$

$$2x \frac{dx}{dt} + 2y. \frac{dy}{dt} = 0 \Longrightarrow 2 \times 12 \times \frac{dx}{dt} + 2 \times 9 \times (-2) = 0$$
$$\frac{dx}{dt} = \frac{+36}{24} = \frac{3}{2} \text{ ft / sec}$$

 $\frac{dx}{d\theta} = -4a\cos^3\theta \cdot \sin\theta \quad \frac{dy}{d\theta} = 4a\sin^3\theta\cos\theta$ 

A ladder of 15 feet long leans against a smooth vertical wall. If the top slides

downwards at the rate of 2 ft/sec. Find how fast the lower end is moving when the

 $\frac{dy}{d\theta} = \frac{4a\sin^3\theta\cos\theta}{-4a\cos^3\theta\sin\theta} = \frac{-\sin^2\theta}{\cos^2\theta} = -\tan^2\theta$ 

lower end is 12fet away from the wall.

**Solution :**  $\frac{dy}{dt} = -2ft / sec \frac{dx}{dt} = ? \quad x = 12$ 

 $5 \times 5 = 25$ 

9

$$3x + y - 2z = 3$$

$$x - y - z = -1$$
Solution:
$$x + y - z = 1$$

$$3x + y - 2z = 3$$

$$x - y - z = -1$$
Ax = B  $\Rightarrow$  X = A<sup>-1</sup>B
Where A =  $\begin{bmatrix} 1 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & -1 & -1 \end{bmatrix}$ ,  $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ , B =  $\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ 

$$|A| = \begin{vmatrix} 1 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & -1 & -1 \end{vmatrix} = 2 \neq 0$$

$$\Rightarrow C_{11} = -3, C_{12} = 1, C_{13} = 4, C_{21} = 2, C_{22} = 0, C_{23} = 2, C_{31} = 1, C_{32} = 1, C_{33} = 2$$

$$C = \begin{bmatrix} -3 & 1 & -4 \\ 2 & 0 & 2 \\ -1 & -1 & -2 \end{bmatrix}$$
Adj (A) =  $\begin{bmatrix} -3 & 2 & -1 \\ 1 & 0 & -1 \\ -4 & 2 & -2 \end{bmatrix}$ 

$$x = \frac{1}{2} \begin{bmatrix} -3 & 2 & -1 \\ 1 & 0 & -1 \\ -4 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$

$$x = 2, y = 1, z = 2.$$

10

36. Find the coefficient 
$$x^8 in \left(3x^2 - \frac{1}{2x}\right)^{10}$$
.  
Solution : Given  $\left(3x^2 - \frac{1}{24}\right)^{10}$   
 $T_{r+1} = {}^{n}C_r x^{4-r} a^r$   
 $T_{r+1} = {}^{10}C_r (3x^2)^{10-r} \left(\frac{1}{2x}\right)^r$   
 $T_{r+1} = {}^{10}C_r (3)^{10-r} \left(\frac{1}{2}\right)^r (x)^{2(10-r)-r}$   
Take  $2(10-r)-r = 8$   
 $20-3r = 8 \Rightarrow 3r = 12 \Rightarrow r = 4$   
Co-eff of  $x^8$  is  $= {}^{10}C_4 (3)^{10.4} \left(\frac{1}{2}\right)^4 = {}^{10}C_4 (3)^6 \left(\frac{1}{2}\right)^4$   
37. Resolve  $\frac{2x^2 + 10x - 3}{(x+1)(x-3)(x+3)}$  into partial fractions.  
Solution : Given  $\frac{2x^2 + 10x - 3}{(x+1)(x-3)(x+3)}$   
 $\frac{2x^2 + 10x - 3}{(x+1)(x-3)(x+3)} = \frac{A}{(x+1)} + \frac{B}{(x-3)} + \frac{C}{(x+3)}$   
 $2x^2 + 10x - 3 = A(x-3) (x+3) + B (x+1) (x+3) + C(x+1)$   
Put  $x = 3, 2(3)^2 + 10(3) - 3 = B(4)$  (6)  
 $18 + 30 - 3 = 24B$   
 $\frac{45}{24} = B$   
Put  $x = -3, 18 - 30 - 3 = C(-2)$  (-6)  
 $\frac{15}{12} = C \Rightarrow C = \frac{-15}{12}$   
Put  $x = -1, 2 - 10 - 3 = A(-8)$ 

$$\frac{-11}{-8} = A \Longrightarrow A = \frac{11}{8}$$
$$\frac{2x2 + 10x - 3}{(x+1)(x-3)(x+3)} = \frac{\frac{11}{8}}{(x+1)} + \frac{\frac{45}{24}}{(x-3)} + \frac{\frac{-15}{12}}{x+3}$$

38. Show that  $\sim (p \lor q) \rightarrow (\sim p \land -q)$  is a Tautology.

**Solution :** 

|   |   |     | (a)                      |    |    | (b)   | a→b |
|---|---|-----|--------------------------|----|----|-------|-----|
| р | q | p∨q | ~( <b>p</b> ∨ <b>q</b> ) | ~p | ~q | ~p∩~q | Т   |
| Т | Т | Т   | F                        | F  | F  | F     | Т   |
| Т | F | Т   | F                        | F  | Т  | F     | Т   |
| F | Т | Т   | F                        | Т  | F  | F     | Т   |
| F | F | F   | Т                        | Т  | Т  | Т     | Т   |

: Given proposition is a tautology.

39. ABC company required 1000 hours to produce 1<sup>st</sup> 30 engines. If the learning effect is 90%. Find the total labour cost at Rs. 20/ hour to produce a total of 120 engines.

**Solution :** 1 lot = 30 engine

120 engine =  $4 \log s$ 

| Unit produced | Total output time | Cumulative average | Total labours |
|---------------|-------------------|--------------------|---------------|
|               | per unit          | time per unit      |               |
| 1             | 1                 | 1000               | 1000          |
| 1             | 2                 | 90% of 1000 = 900  | 1800          |
| 2             | 4                 | 90% of 900 = 810   | 3240          |

Total hours = 3240Total labour cost =  $20 \times 3240$  = Rs. 64,800/-

40. Solve the following LPP graphically

Mmaximize : Z = 5x + 3y

Subject to the constraints :

 $3x + 5y \le 15,$ 

 $5x + 2y \le 10,$   $x \ge 0,$   $y \ge 0.$ Solution : max Z = 5x + 3y3x + 5y = 15

Put

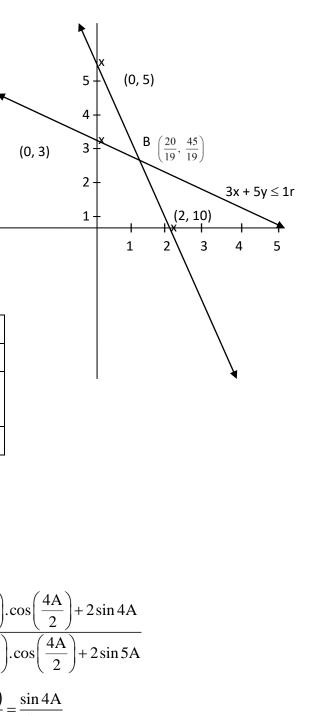
| X | 0 | 5 |
|---|---|---|
| у | 3 | 0 |

5x + 2y = 10

| Х | 0 | 2 |  |
|---|---|---|--|
| У | 5 | 0 |  |

We set 3x + 5y = 15

5x + 2y = 10


| Corner points                              | Value of Z      |
|--------------------------------------------|-----------------|
| (0, 3)                                     | 9               |
| $\left(\frac{20}{19},\frac{45}{19}\right)$ | 12.36 – maximum |
| (2, 0)                                     | 10              |

Hence Z = 
$$\frac{235}{19}$$
 is maximum at  $\left(\frac{20}{19}, \frac{45}{19}\right)$ 

41. **Prove that :** 
$$\frac{\sin 6A + \sin 2A + 2\sin 4A}{\sin 7A + \sin 3A + 2\sin 5A} = \frac{\sin 4A}{\sin 5A}.$$

Solution: 
$$\frac{\sin 6A + \sin 2A + 2\sin 4A}{\sin 7A + \sin 3A + 2\sin 5A} = \frac{2\sin\left(\frac{8A}{2}\right) \cdot \cos\left(\frac{4A}{2}\right) + 2\sin 4A}{2\sin\left(\frac{10A}{2}\right) \cdot \cos\left(\frac{4A}{2}\right) + 2\sin 5A}$$
$$2\sin 4A \cos 2A + 2\sin 4A - 2\sin 4A (\cos 2A + 1) - \sin 4A$$

 $= \frac{1}{2\sin 5A\cos 2A + 2\sin 50} = \frac{1}{2\sin 5A(\cos 2A + 1)} = \frac{1}{\sin 5A}$ 



13

42.Find the equation of the circle passing through the points (1,-4) ,(5,2) and having its centre on the line x-2y+9=0.

**Solution :** General equation of the circle is  $x^2+y^2+2gx+2fy+c=0$ 

$$(1,-4) \rightarrow 2g-8f+c=-17....(1)$$

$$(5,2) \rightarrow 10g+4f+c=-29...(2)$$
Centre (-g,-f) on x-2y+9=0  $\rightarrow -g + 2f = -9...(3)$ 
Solving (1)and(2), -2g -3f=3....(4)  
Solving (3) and (4) f=-3, g=3 and c=-47  
Then the equation of circle is  $x^2+y^2+6x-6y-47=0$   
43.Evaluate  $\lim_{x\to 2} \left(\frac{x^2-4}{\sqrt{x+2}-\sqrt{3x-2}}\right) \times \lim_{x\to 2} \left(\frac{\sqrt{x+2}+\sqrt{3x-2}}{\sqrt{x+2}+\sqrt{3x-2}}\right)$   
Solution:  $\lim_{x\to 2} \left(\frac{(x+2)(x-2)}{\sqrt{x+2}-\sqrt{3x-2}}\right) \times \lim_{x\to 2} \left(\frac{\sqrt{x+2}+\sqrt{3x-2}}{\sqrt{x+2}+\sqrt{3x-2}}\right)$   
 $= \lim_{x\to 2} \left(\frac{(x+2)(x-2)}{\sqrt{x+2}-\sqrt{3x-2}}\right) \times \lim_{x\to 2} \left(\frac{\sqrt{x+2}+\sqrt{3x-2}}{\sqrt{x+2}+\sqrt{3x-2}}\right)$   
 $= \lim_{x\to 2} \left(\frac{(x+2)(x-2)}{(x+2)-(3x-2)}\right) \times \lim_{x\to 2} (\sqrt{x+2}+\sqrt{3x-2})$   
 $= \lim_{x\to 2} \left(\frac{(x+2)(x-2)}{(x+2)-(3x-2)}\right) \times \lim_{x\to 2} (\sqrt{x+2}+\sqrt{3x-2})$   
 $= \lim_{x\to 2} \left(\frac{(x+2)(x-2)}{-(x-2)}\right) \times \lim_{x\to 2} (\sqrt{x+2}+\sqrt{3x-2})$ 

### PART-E

### VIII. Answer any TWO of the following questions :

44) A flag staff stands upon the top of a building at a distance of 20mts .The angles of elevation of the top of the flag staff and the building are  $60^{\circ}$  and  $30^{\circ}$  respectively .Find the height of the flag staff .

### Solution:



Let the height of the flag staff BC=h

From triangle BAD,  $\tan 30^\circ =$ — then  $AB = \frac{1}{\sqrt{2}}$ 

From triangle CAD, tan60°= then h+AB= $20\sqrt{3}$  h= $\frac{40\sqrt{3}}{\sqrt{3}}$  m

45)If y=acos(logx)+bsin(logx). Show that  $x^2y_2+xy_1+y=0$ 

Solution: y=acos(logx)+bsin(logx)

Differentiating w.r.t x,

y<sub>1</sub>=\_\_\_\_\_

 $xy_1 = -asin(logx) + bcos(logx)$ 

Again differentiating w.r.t x,

$$xy_2+y_1=$$

 $x^2y_2+xy_1+y=0$ 

46) The total revenue function is given by  $R=400x-2x^2$  and the total cost function is given by  $C=2x^2+40x+4000$ .Find

a)The marginal revenue and marginal cost function

b)the output at which marginal revenue =marginal cost

Solution: Marginal revenue =---

Marginal cost=-

Output when MR=MC, i.e, 400-4x=4x+40

8x=360

15

X=45 units

. . . . . . . . . . . . .

.....