# CREATIVIV LEARNING CLASSES. KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117

## DETAILED SOLUTIONS

1. A ceiling fan is rotating around fixed axle as shown. The direction of angular velocity is along $\qquad$ -

A) $+j$
B) $-j$
C) $+k$
D) $-k$

Ans: D)
$(-\hat{k})$
The direction of angular velocity is towards negative z-axis according to Right hand screw rule
2. A body of mass 1 kg is suspended by a weightless string which passes over a frictionless pulley of mass 2 kg as shown in the figure. The mass is released from a height of 1.6 m from the ground. With what velocity does it strike the ground?

A) $16 \mathrm{~ms}^{-1}$
B) $8 \mathrm{~ms}^{-1}$
C) $4 \sqrt{2} \mathrm{~ms}^{-1}$
D) $4 \mathrm{~ms}^{-1}$

Ans: D)
According to conservation of mechanical energy:
$m g h=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code: B3
THELEADER

## DETAILED SOLUTIONS

$$
\begin{aligned}
& v=\omega R \\
& \omega^{2}=\frac{v^{2}}{R^{2}} \\
& 16=\frac{1}{2} \times 1 \times v^{2}+\frac{1}{2} \times \frac{m R^{2}}{2} \times \frac{v^{2}}{R^{2}} \\
& 16=\frac{v^{2}}{2}+\frac{v^{2}}{2} \\
& 16=v^{2} \\
& v=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. What is the value of acceleration due to gravity at a height equal to half the radius of the Earth, from its surface?
A) $4.4 \mathrm{~ms}^{-2}$
B) $6.5 \mathrm{~ms}^{-2}$
C) Zero
D) $9.8 \mathrm{~ms}^{-2}$

Ans: A)
$g^{\prime}=g \frac{R^{2}}{(R+h)^{2}}$
$g^{\prime}=g \frac{R^{2}}{\left(R+\frac{R}{2}\right)^{2}}=\frac{g R^{2}}{\left(\frac{3 R}{2}\right)^{2}}=\frac{4 g}{9}=4.4 \mathrm{~m} / \mathrm{s}^{2}$
4. A thick metal wire of density $\rho$ and length ' $L$ ' is hung from a rigid support. The increase in length of the wire due to its own weight is ( $\mathrm{Y}=$ Young's modulus of the material of the wire)
A) $\frac{\rho g L}{Y}$
B) $\frac{1}{2} \frac{\rho g L^{2}}{O F}$
C) $\frac{\rho g L^{2}}{\square Y(R I(R)}$
D) $\frac{1}{4 Y} \rho g L^{2}$

Ans: D)
$F=M g$
$Y=\frac{\left(\frac{F}{A}\right)}{\left(\frac{\Delta l}{l}\right)}$
Weight acts at the mid-point
$l=\frac{L}{2}$ and $M=\rho A L$
$Y=\frac{M g\left(\frac{L}{2}\right)}{A \cdot \Delta l}$
$\Delta l=\frac{\rho L^{2} g}{2 Y}$

# CREATİVE LEARNING CLASSES 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code: B3

## THELEADER

## DETAILED SOLUTIONS

5. Water flows through a horizontal pipe of varying cross-section at a rate of $0.314 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ The velocity of water at a point where the radius of the pipe is 10 cm is
A) $0.1 \mathrm{~ms}^{-1}$
B) $1 \mathrm{~ms}^{-1}$
C) $10 \mathrm{~ms}^{-1}$
D) $100 \mathrm{~ms}^{-1}$

Ans: C)
$a v=$ volume rate of flow
$\pi r^{2} v=0.314$
$\pi \times(0 \cdot 1)^{2} \times v=0.314 \mathrm{~m}^{3} / \mathrm{s}$
$v=10 \mathrm{~m} / \mathrm{s}$
6. A solid cube of mass at a temperature $\theta_{0}$ is heated at a constant rate. It becomes liquid at temperature $\theta_{1}$ and vapour at temperature $\theta_{2}$. Let $\mathrm{s}_{1}$ and $\mathrm{s}_{2}$ be specific heats in its solid and liquid states respectively. If $\mathrm{L}_{\mathrm{f}}$ and $\mathrm{L}_{\mathrm{v}}$ are latent heats of fusion and vaporization respectively, then the minimum heat energy supplied to the cube until it vaporizes is
A) $m s_{1}\left(\theta_{1}-\theta_{0}\right)+m s_{2}\left(\theta_{2}-\theta_{1}\right)$
B) $m L_{f}+m s_{2}\left(\theta_{2}-\theta_{1}\right)+m L_{v}$
C) $m s_{1}\left(\theta_{1}-\theta_{0}\right)+m L_{f}+m s_{2}\left(\theta_{2}-\theta_{1}\right)+m L_{v}$
D) $m s_{1}\left(\theta_{1}-\theta_{0}\right)+m L_{f}+m s_{2}\left(\theta_{2}-\theta_{1}\right)+m L_{v}$

Ans: C)

$$
\text { Solid } \xrightarrow[\rightarrow]{Q_{1}} \text { aolid } \xrightarrow{Q_{2}} \text { Liquid } \xrightarrow[\rightarrow]{Q_{3}} \underset{\text { ai } B P D}{ } \xrightarrow{Q_{1}} \text { Vapour } \quad \mathrm{Q}_{1}
$$

education Foundation moodadre ( r )
So

$$
Q=m s_{1}\left(\theta-\theta_{0}\right)+m L_{f}+m s_{2}\left(\theta_{2}-\theta_{1}\right)+m L_{v}
$$

7. One mole of an ideal monoatomic gas is taken round the cyclic process MNOM. The work done by the gas is

A) $4.5 \mathrm{P}_{0} \mathrm{~V}_{0}$
B) $4 \mathrm{P}_{0} \mathrm{~V}_{0}$
C) $9 \mathrm{P}_{0} \mathrm{~V}_{0}$
D) $2 \mathrm{P}_{0} \mathrm{~V}_{0}$

## DETAILED SOLUTIONS

Ans: D)
Work done $=$ Area under PV graph

$$
\begin{aligned}
& =\frac{1}{2} \times O M \times O N \\
& =\frac{1}{2} \times 2 P_{0} \times 2 V_{0} \\
& =2 P_{0} V_{0}
\end{aligned}
$$

8. The ratio of molar specific heats of oxygen is
A) 1.4
B) 1.67
C) 1.33
D) 1.28

Ans: A)
Oxygen is diatomic
So, $\gamma=\frac{7}{5}=1 \cdot 4$
9. For a particle executing simple harmonic motion (SHM), at its mean position
A) Velocity is zero and acceleration is maximum
B) Velocity is maximum and acceleration is zero.
C) Both velocity and acceleration are maximum
D) Both velocity and acceleration are zero.

Ans: B)
At mean position $\mathrm{x}=0$
$v=\omega \sqrt{A^{2}-x^{2}}=A \omega=$ maximum ATION MOODBIDRI (R)
$a=-\omega^{2} x$
$\mathrm{a}=0 \quad$ minimum
10. A motor cyclist moving towards a huge cliff with a speed of $18 \mathrm{kmh}^{-1}$, blows a horn of source frequency 325 Hz . If the speed of the sound in air is $330 \mathrm{~ms}^{-1}$, the number of beats heard by him is
A) 5
B) 4
C) 10
D) 7

Ans: C) [Out of Syllabus - Doppler effect]
$f_{a_{P P}}=f\left(\frac{v+v_{0}}{v-v_{s}}\right)$

## DETAILED SOLUTIONS

$=325\left(\frac{330+5}{330-5}\right)=325 \times 1.03=335$
Beat frequency $=335-325=10 \mathrm{~Hz}$
11. A body has a charge of $-3.2 \mu \mathrm{C}$. The number of excess electron it has is
A) $5.12 \times 10^{25}$
B) $5 \times 10^{12}$
C) $2 \times 10^{13}$
D) $5.12 \times 10^{13}$

Ans: C)
$\mathrm{Q}=-3.2 \mu \mathrm{C}$
$\mathrm{Q}= \pm \mathrm{ne}$
$-3.2 \times 10^{-6}=-n \times 1.6 \times 10^{-19}$
$\mathrm{n}=\frac{3.2 \times 10^{-6}}{1.6 \times 10^{-19}}$
$\mathrm{n}=2 \times 10^{13}$
12. A point charges A of $+10 \mu \mathrm{C}$ and another point charge B of $+20 \mu \mathrm{C}$ are kept 1 m apart in free space. The electrostatic force on A due to B is $\vec{F}_{1}$ and the electrostatic force on B due to A is $\vec{F}_{2}$. Then
A) $\vec{F}_{1}=-2 \vec{F}_{2}$
B) $\vec{F}_{1}=-\vec{F}_{2}$
C) $2 \vec{F}_{1}=-\vec{F}_{2}$
D) $\vec{F}_{1}=\vec{F}_{2}$

## Ans: B)

According to newtons third law

$$
\overrightarrow{F_{1}}=-\overrightarrow{F_{2}}
$$

EDUCATION FOUNDATION MOODBIDRI (R)
13. A uniform electric field $\mathrm{E}=3 \times 10^{5} \mathrm{NC}^{-1}$ is acting along the positive Y -axis. The electric flux through a rectangle of area $10 \mathrm{~cm} \times 30 \mathrm{~cm}$ whose plane is parallel to the Z-X plane is:
A) $12 \times 10^{3} \mathrm{Vm}$
B) $9 \times 10^{3} \mathrm{Vm}$
C) $15 \times 10^{3} \mathrm{Vm}$
D) $18 \times 10^{3} \mathrm{Vm}$

Ans: B)


Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code: B3
THELEADER

## DETAILED SOLUTIONS

$\vec{E}=3 \times 10^{5} \hat{\jmath} \frac{N}{C}$
$\vec{A}=300 \hat{\mathrm{~cm}}{ }^{2}$
$\emptyset=\vec{E} . \vec{A}$
$\emptyset=\left(3 \times 10^{5}\right) \times 300 \times 10^{-4}=9 \times 10^{3} \frac{\mathrm{~V}}{\mathrm{~m}}$
14. The total electric flux through a closed spherical surface of radius ' $r$ ' enclosing an electric dipole of dipole moment 2aq is (Given $\varepsilon_{0}=$ permittivity of free space)
A) Zero
B) $\frac{q}{\varepsilon_{0}}$
C) $\frac{2 q}{\varepsilon_{0}}$
D) $\frac{8 \pi r^{2} q}{\varepsilon_{0}}$

Ans: A)
$\varnothing=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
Net charge on dipole $=0$
$\varnothing=0$
15. Under electrostatic condition of a charged conductor, which among the following statements is true?
A) The electric field on the surface of a charged conductor is $\frac{\sigma}{2 \varepsilon_{0}}$, where $\sigma$ is the surface charge density
B) The electric potential inside a charged conductor is always zero.
C) Any excess charge resides on the surface of the conductor.
D) The net electric field is tangential to the surface of the conductor.

Ans: C)
16. A cube of side 1 cm contains 100 molecules each having an induced dipole moment of $0.2 \times 10^{-6} \mathrm{C} . \mathrm{m}$ in an external electric field of $4 \mathrm{NC}^{-1}$. The electric susceptibility of the material is $\qquad$ $C^{2} N^{-1} m^{-2}$.
A) 50
B) 5
C) 0.5
D) 0.05

Ans: No Answer)
$\varepsilon_{0} \chi E=p \quad p \rightarrow$ Dipole moment per unit volume
$\Rightarrow \chi=\frac{p}{\varepsilon_{0} E} \Rightarrow \chi=\frac{20}{8.85 \times 10^{-12} \times 4}=0.56 \times 10^{-12}$

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code: B3

## THELEADER

## DETAILED SOLUTIONS

17. A capacitor of capacitance of $5 \mu F$ is charged by a battery of emf 10 V . At an instant of time, the potential difference across the capacitor is 4 V and the time rate of change of potential difference across the capacitor is $0.6 \mathrm{Vs}^{-1}$. Then the time rate at which energy is stored in the capacitor at that instant is
A) $12 \mu \mathrm{~W}$
B) $3 \mu \mathrm{~W}$
C) zero
D) $30 \mu \mathrm{~W}$

Ans: A)
$\mathrm{U}=\frac{1}{2} C V^{2}$

$$
\frac{d U}{d t}=\frac{1}{2} \cdot \mathrm{C} \cdot 2 \mathrm{~V} \frac{d v}{d t}=5 \times 10^{-6} \times 4 \times 0.6=12 \times 10^{-6} \mathrm{~W} .
$$

18. $\vec{E}$ is the electric filed inside a conductor whose material has conductivity $\sigma$ and resistivity $\rho$. The current density inside the conductor is $\vec{j}$. The correct form of Ohm's law is
A) $\vec{E}=\sigma \vec{j}$
B) $\vec{j}=\rho \vec{E}$
C) $\vec{E}=\rho \vec{j}$
D) $\vec{E} \cdot \vec{j}=\rho$

Ans: C)
19. In the circuit shown, the end $A$ is at potential $V_{0}$ and end $B$ is grounded. The electric current I indicated in the circuit is

A) $\frac{V_{0}}{R}$
B) $\frac{2 V_{0}}{R}$
C) $\frac{3 V_{0}}{R}$
D) $\frac{V_{0}}{3 R}$

Ans: D) [Out of Syllabus - Equivalent Resistance]

$$
\mathrm{I}=\frac{\Delta V}{R_{e f f}}=\frac{V_{0}}{3 R}
$$

## DETAILED SOLUTIONS

20. The electric current flowing through a given conductor varies with time as shown in the graph below. The number of free electrons which flow through a given crosssection of the conductor in the time interval $0 \leq \mathrm{t} \leq 20 \mathrm{~s}$ is

A) $3.125 \times 10^{19}$
B) $1.6 \times 10^{19}$
C) $6.25 \times 10^{18}$
D) $1.625 \times 10^{18}$

Ans: A)
$\mathrm{I}=\frac{q}{t}$
$\mathrm{Q}=\mathrm{It}$
= Area under the curve
$=\left(\frac{1}{2} \times 10 \times 200 \times 10^{-3}\right)+8 \times\left(5 \times 100 \times 10^{-3}\right)$
$=1+(8 \times 0.5)=5 \mathrm{C}$
$\mathrm{Q}= \pm \mathrm{ne}$
$5=n \times 1.6 \times 10^{-19}$
EDUCATIon Foundation moodridre (r)
$\mathrm{n}=\frac{5}{1.6} \times 10^{19}=3.125 \times 10^{19}$
21. The I- V graph for a conductor at two different temperatures $100^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$ is as shown in the figure. The temperature coefficient of resistance of the conductor is about (in per degree Celsius)

A) $3 \times 10^{-3}$
B) $6 \times 10^{-3}$
C) $9 \times 10^{-3}$
D) $12 \times 10^{-3}$

## DETAILED SOLUTIONS

Ans: A)

$$
I=\frac{V}{R}
$$

$$
\Rightarrow \text { slope }=\frac{1}{R}=\tan \theta
$$

$$
\Rightarrow R=\frac{1}{\tan \theta}
$$

$$
R_{100}=\frac{1}{\tan 45^{\circ}}=1 \Omega
$$

$$
R_{400}=\frac{1}{\tan 30^{\circ}}=\sqrt{3} \Omega
$$

$$
R_{400}=R_{o}(1+\alpha(400))------(1)
$$

$$
R_{100}=R_{o}(1+\alpha(100))-------(2)
$$

$$
\frac{(1)}{(2)} \Rightarrow \frac{R_{400}}{R_{100}}=\frac{1+\alpha(400)}{1+\alpha(100)}
$$

$$
\begin{aligned}
& \sqrt{3}=\frac{1+\alpha(400)}{1+\alpha(100)} \Rightarrow \sqrt{3}(1+100 \alpha)=1+400 \alpha \Rightarrow \alpha=\frac{\sqrt{3}-1}{400-100 \sqrt{3}} \\
& =0.0032 /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

22. An electric bulb of $60 \mathrm{~W}, 120 \mathrm{~V}$ is to be connected to 220 V source. What resistance should be connected in series with the bulb, so that the bulb glows properly?
A) $50 \Omega$
ED) $100 \Omega$ OUNDATION
C) $200 \Omega_{(R)}$
D) $288 \Omega$

Ans: C)
To glow properly, Resistance across bulb is 120 v . so resistance across " R " is 100 volt.


## DETAILED SOLUTIONS

$\frac{V_{\text {bulb }}}{R_{\text {bulb }}}=\frac{V_{\text {Resistance }}}{R}$
$\Rightarrow \frac{120}{240}=\frac{100}{R} \quad(\because$ Bulb and ' $R$ ' are in series. SO current is same. $)$
$\Rightarrow R=100 \times \frac{240}{120}$
$\Rightarrow R=200 \Omega$
23. In an experiment to determine the temperature coefficient of resistance of a conductor a coil of wire X is immersed in a liquid. It is heated by an external agent. A meter bridge set up is used to determine resistance of the coil X at different temperatures. The balancing points measured at temperature $t_{1}=0^{\circ} \mathrm{C}$ and $t_{2}=100^{\circ} \mathrm{C}$ are 50 cm and 60 cm respectively. If the standard resistance taken out is $S=4 \Omega$ in both trials, the temperature coefficient of the coil is

A) $0.05^{0} C^{-1}$
B) $0.02^{0} \mathrm{C}^{-1}$
C) $0.005^{0} C^{-1}$
D) $2.0^{0} \mathrm{C}^{-1}$

Ans : C) [Out of Syllabus - Meter Bridge] поодаірг (R)
At $0^{\circ} \mathrm{C}$, Balancing length is 50 cm
At $100^{\circ} \mathrm{C}$, Balancing length is 60 cm
At $0^{\circ} \mathrm{C}$
$\frac{R_{0}}{4}=\frac{50}{50} \Rightarrow R_{0}=4 \Omega$
At $100^{\circ} \mathrm{C}$
$\frac{R_{100}}{4}=\frac{60}{40} \Rightarrow R_{100}=\frac{60}{40} \times 4=6 \Omega$
$R_{100}=R_{0}(1+\alpha T)$
$\Rightarrow 6=4(1+\alpha(100)) \Rightarrow 1+100 \alpha=1.5 \Rightarrow 100 \alpha=0.5$
$\alpha=5 \times 10^{-3} / C$

## DETAILED SOLUTIONS

24. A moving electron produces
A) Only electric field
B) Both electric and magnetic field
C) Only magnetic field
D) Neither electric nor magnetic field

Ans: B)
A moving charge produces both electric and magnetic field.
25. A coil having 9 turns carrying a current produces magnetic field $B_{1}$ at the centre. Now that coil is rewounded into 3 turns carrying same current. Then magnetic field at the centre $\mathrm{B}_{2}=$ $\qquad$
A) $\frac{B_{1}}{9}$
B) $9 B_{1}$
C) $3 \mathrm{~B}_{1}$
D) $\frac{B_{1}}{3}$

Ans: A)
Initially
$\ell=N_{1}\left(2 \pi r_{1}\right)----(1)$
Finally
$N_{1}=9$
$B_{1}=\frac{N_{1} \mu_{0} i}{2 r_{1}}$

$$
\begin{aligned}
& \ell=N_{2}\left(2 \pi r_{2}\right)-----(2) \\
& N_{2}=3 \\
& B_{2}=\frac{N_{2} \mu_{0} i}{2 r_{3}}----(3)
\end{aligned}
$$

From (1) and (2)

$$
N_{1}\left(2 \pi r_{1}\right)=N_{2}\left(2 \pi r_{2}\right)
$$

$$
\Rightarrow r_{2}=\frac{N_{1} r_{1}}{N_{2}}=\frac{9\left(r_{1}\right)}{3}=3 r_{1} \quad \text { EDUCATION FOUNDATION MOODBIDRI (R) }
$$

$$
B_{2}=\frac{3 \mu_{0} i}{2\left(r_{2}\right)}=\frac{3 \mu_{0} i}{2 \cdot\left(3 r_{1}\right)}=\frac{\mu_{0} i}{2 r_{1}}=\frac{1}{9}\left(\frac{9 \mu_{0} i}{2 r_{1}}\right)
$$

$$
=\frac{B_{1}}{9}
$$

26. A particle of specific charge $\frac{\mathrm{q}}{\mathrm{m}}=\pi \mathrm{C} \mathrm{kg}^{-1}$ is projected from the origin towards positive $\mathrm{x}-$ axis with the velocity $10 \mathrm{~ms}^{-1}$ in a uniform magnetic field $\vec{B}=-2 k T$. The velocity $\vec{v}$ of particle after time $t=\frac{1}{12} s$ will be (in $m s^{-1}$ )
A) $5(\hat{i}+j)$
B) $5(\hat{i}+\sqrt{3} j)$
C) $5(\sqrt{3} \hat{i}-j)$
D) $5(\sqrt{3} \hat{i}+j)$

Ans: D)

# CREATİVE LEARNING CLASSES <br> KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics

## DETAILED SOLUTIONS

$\frac{q}{m}=\pi \quad C k g^{-1}$
$\vec{B}=-2 k T$
Time period $=\frac{2 \pi m}{Q B}=\frac{2 \pi}{2} \cdot \frac{1}{\pi}=1 \mathrm{sec}$
It rotates by ' $30^{\circ}$ ' in $\frac{1^{\prime}}{12}$ second
After $\frac{1}{12}$ second


$$
\begin{aligned}
\vec{V}= & 10 \cos 30^{\circ} \hat{i}+10 \sin 30^{\circ} j \\
& =5 \sqrt{3} \hat{i}+5 j \\
& =5(\sqrt{3} \hat{i}+j) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

27. The magnetic field at the centre of a circular coil of radius $R$ carrying current $I$ is 64 times the magnetic field at a distance x on its axis from the centre of the coil. Then the value of x is
A) $\frac{R}{4} \sqrt{15}$
B) $R \sqrt{3}$
C) $\frac{R}{4}$
D) $R \sqrt{15}$

EDUCATION FOUNDATION MOODBIDRI (R)
Ans: D)
$B_{\text {ceurre }}=\frac{\mu_{0} i}{2 R} \quad B_{\text {axis }}=\frac{\mu_{0} i\left(R^{2}\right)}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$
$B_{\text {centre }}=64 B_{\text {axis }}$
$\Rightarrow \frac{\mu_{0} i}{2 R}=64\left(\frac{\mu_{0} i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}\right)$
$\Rightarrow\left(R^{2}+x^{2}\right)^{3 / 2}=64 R^{3}$
$\Rightarrow R^{2}+x^{2}=16 R^{2}$
$\Rightarrow 15 R^{2}=x^{2}$
$\Rightarrow x=\sqrt{15} R$

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code : B3
THELEADER

## TO GET SUCCESS IN ALL COMPETITIVE EXAMS...

## DETAILED SOLUTIONS

28. Magnetic hysteresis is exhibited by $\qquad$ magnetic materials.
A) Only para
B) only dia
C) only ferro
D) both para and ferro

## Ans : C) [Out of Syllabus - Hysteresis]

Magnetic hysteresis is only Exhibited by Ferromagnetic materials.
29. Magnetic susceptibility of Mg at 300 K is $1.2 \times 10^{-5}$. What is its susceptibility at 200 K?
A) $18 \times 10^{-5}$
B) $180 \times 10^{-5}$
C) $1.8 \times 10^{-5}$
D) $0.18 \times 10^{-5}$

## Ans : C) [Out of Syllabus - Curies Law]

$\chi=\frac{C}{T}$
$\Rightarrow \chi_{1} T_{1}=\chi_{2} T_{2}$
$\Rightarrow\left(1.2 \times 10^{-5}\right)(300)=X_{2}(200)$
$\Rightarrow \chi_{2}=\frac{\left(1.2 \times 10^{-5}\right)(300)}{200}=1.8 \times 10^{-5}$
30. A uniform magnetic field of strength $B=2 m T$ exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere $S_{1}$, a right circular cone, $S_{2}$ and a circular surface $S_{3}$. The magnetic flux through $S_{1}$ and $S_{2}$ are respectively

A) $\phi_{S_{1}}=-20 \mu \mathrm{~Wb}, \phi_{S_{2}}=+20 \mu \mathrm{~Wb}$
B) $\phi_{S_{1}}=+20 \mu \mathrm{~Wb}, \phi_{S_{2}}=-20 \mu \mathrm{~Wb}$
C) $\phi_{S_{1}}=-40 \mu \mathrm{~Wb}, \phi_{S_{2}}=+40 \mu \mathrm{~Wb}$
D) $\phi_{S_{1}}=+40 \mu \mathrm{~Wb}, \phi_{S_{2}}=-40 \mu \mathrm{~Wb}$

## Ans: NO ANSWER

Total flux through ' $\mathrm{S}_{1}$ ' and ' $\mathrm{S}_{3}$ ' is equal to Zero. Since, magnetic flux through a closed surface is zero.

## DETAILED SOLUTIONS

$\phi_{S_{1}}+\phi_{S_{3}}=0 \Rightarrow \phi_{S_{1}}=-\phi_{S_{3}}$
$\phi_{S_{3}}=\mathrm{B}\left(\phi_{S_{1}}\right)=\left(2 \times 10^{-3}\right)\left(\pi \mathrm{R}^{2}\right) \Rightarrow{ }^{\phi} \mathrm{S}_{3}=\left(2 \times 10^{-3}\right) \pi\left(\frac{100}{\pi}\right)$

$$
=2 \times 10^{-1} \text { weber }
$$

$\therefore{ }^{\phi} \mathrm{S}_{1}=-2 \times 10^{-1} \mathrm{wb}$
Total flux through ' $\mathrm{S}_{3}$ ' and ' $\mathrm{S}_{2}$ ' is equal to zero.
${ }^{\phi} S_{2}+{ }^{\phi} S_{3}=0$
$\Rightarrow{ }^{\phi} \mathrm{S}_{2}=-^{\phi} \mathrm{S}_{3}$
$\Rightarrow{ }^{\phi} \mathrm{S}_{2}=-\left(-2 \times 10^{-1}\right) \quad\left({ }^{\phi} \mathrm{S}_{3}=-{ }^{\phi} \mathrm{S}_{3}\right)$
$\Rightarrow{ }^{\phi} \mathrm{S}_{2}=2 \times 10^{-1}$ weber
31. In the figure, a conducting ring of certain resistance is falling towards a current carrying straight long conductor. The ring and conductor are in the same plane. Then the

A) Induced electric current is zero
B) Induced electric current is anticlockwise
C) Induced electric current is clockwise
D) Ring will come to resttion foundation moodaidr (r)

Ans: C)


Induced electric current is clockwise
32. An induced current of 2 A flows through a coil. The resistance of the coil is $10 \Omega$. What is the change in magnetic flux associated with the coil in 1 ms ?
A) $0.2 \times 10^{-2} \mathrm{~Wb}$
B) $2 \times 10^{-2} \mathrm{~Wb}$
C) $22 \times 10^{-2} \mathrm{~Wb}$
D) $0.22 \times 10^{-2} \mathrm{~Wb}$

Ans: B)

# CREATIVIV LEARNING CLASSES. KARKala 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code : B3

## THELEADER

## DETAILED SOLUTIONS

$\mathrm{I}=2 \mathrm{~A}, \mathrm{R}=10 \Omega$
Induced emf $\epsilon=\frac{\Delta \phi}{\Delta t}$

$$
\begin{aligned}
& I R=\frac{\Delta \phi}{\Delta t} \\
& \Delta \phi=I R \Delta t=2 \times 10 \times 10^{-3}=2 \times 10^{-2} \mathrm{~Wb}
\end{aligned}
$$

33. A square loop of side length ' $a$ ' is moving away from an infinitely long current carrying conductor at a constant speed ' $v$ ' as shown. Let ' $x$ ' be the instantaneous distance between the long conductor and side. AB. The mutual inductance (M) of the square loop - long conductor pair changes with time (t) according to which of the following graphs?


Ans: A)


## DETAILED SOLUTIONS

Flux through element $=B(d A)=\frac{\mu_{0} i}{2 r}(a) d r$
$\phi_{A B C D}=\int_{x}^{a+x} \frac{\mu_{0} \mathrm{ia}}{2 r} d r=\frac{\mu_{0} \mathrm{ia}^{a+x}}{2 \mathrm{r}} \int_{x}^{\mathrm{a}} \frac{\mathrm{dr}}{\mathrm{r}}=\frac{\mu_{\mathrm{o}} \mathrm{ia}}{2 \mathrm{r}}[\ln (\mathrm{r})]_{x}^{a+x}$

$$
=\frac{\mu_{\mathrm{o}} \mathrm{ia}}{2 \mathrm{r}} \ln \left(\frac{\mathrm{a}+\mathrm{x}}{\mathrm{x}}\right)
$$

$\Rightarrow \mathrm{Mi}=\frac{\mu_{\mathrm{o}} \mathrm{ia}}{2} \ln \left(\frac{\mathrm{a}+\mathrm{vt}}{\mathrm{vt}}\right)$
$\Rightarrow \mathrm{M}=\frac{\mu_{\mathrm{o}} \mathrm{a}}{2} \ln \left(\frac{\mathrm{a}+\mathrm{vt}}{\mathrm{vt}}\right)$
34. Which of the following combinations should be selected for between tuning of an LCR circuit used for communication?
A) $\mathrm{R}=20 \Omega, \mathrm{~L}=1.5 \mathrm{H}, \mathrm{C}=35 \mu \mathrm{~F}$
B) $\mathrm{R}=25 \Omega, \mathrm{~L}=2.5 \mathrm{H}, \mathrm{C}=45 \mu \mathrm{~F}$
C) $\mathrm{R}=25 \Omega, \mathrm{~L}=1.5 \mathrm{H}, \mathrm{C}=45 \mu \mathrm{~F}$
D) $\mathrm{R}=15 \Omega, \mathrm{~L}=3.5 \mathrm{H}, \mathrm{C}=30 \mu \mathrm{~F}$

## Ans : D) [Out of Syllabus - Quality Factor]

For better tuning of an LCR circuit used for communication, its quality factor is should be high.
quality factor $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$
For option (A) $Q=\frac{1}{20} \sqrt{\frac{1.5}{35 \times 10^{-6}}}=10.35$
For option (B) $Q=\frac{1}{25} \sqrt{\frac{2.5}{45 \times 10^{-6}}}=9.42$ ION MOODBIDRI (R)
For option (C) $Q=\frac{1}{25} \sqrt{\frac{1.5}{45 \times 10^{-6}}}=7.30$
For option (D) $Q=\frac{1}{15} \sqrt{\frac{3.5}{30 \times 10^{-6}}}=22.77$
35. In an LCR series circuit, the value of only capacitance $C$ is varied. The resulting variation of resonance frequency $f_{0}$ as a function of $C$ can be represented as
A)


C)

D)


# CrEATIVVE LEARNING CLASSES KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub : Physics
Version Code: B3
THELEADER

## DETAILED SOLUTIONS

Ans: C)
$f=\frac{1}{2 \pi \sqrt{L C}}$
$f \propto \frac{1}{\sqrt{C}}$ inversely proportional to square root of C
36. The figure shows variations of $R, X_{L}$ and $X_{C}$ with frequency ' $f$ ' in a series $L C R$ circuit. Then for what frequency point is the circuit capacitive?

A) B
B) D
C) A
D) C

Ans: C)
For capacitive circuit
$X_{C}>X_{L}$
$X_{C} \propto \frac{1}{f}$ and $X_{L} \propto f$
37. Electromagnetic waves are incident normally on a perfectly reflecting surface having surface area A. If I is the tensity of the incident electromagnetic radiation and $c$ is the speed of light in vacuum, the force exerted by the electromagnetic wave on the reflecting surface is ${ }^{\text {EDUCATION FOUNDATION MOODBIDRI (R) }}$
A) $\frac{2 \mathrm{IA}}{\mathrm{c}}$
B) $\frac{I A}{c}$
C) $\frac{I A}{2 c}$
D) $\frac{\mathrm{I}}{2 \mathrm{Ac}}$

Ans: A)
$P=\frac{2 I}{c}$
$F=P . A$
$F=\frac{2 I A}{c}$
38. The final image formed by an astronomical telescope is
A) Real, erect and diminished
B) virtual, inverted and diminished
C) Real, inverted and magnified
D) virtual, inverted and magnified

Ans: D)
Virtual, inverted and magnified

## DETAILED SOLUTIONS

39. If the angle of minimum deviation is equal to angle of a prism for an equilateral prism, then the speed of light inside the prism is $\qquad$ -
A) $3 \times 10^{8} \mathrm{~ms}^{-1}$
B) $2 \sqrt{3} \times 10^{8} \mathrm{~ms}^{-1}$
C) $\sqrt{3} \times 10^{8} \mathrm{~ms}^{-1}$
D) $\frac{\sqrt{3}}{2} \times 10^{8} \mathrm{~ms}^{-1}$

Ans: C)
$\mu=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \frac{A}{2}}=\frac{\sin 60^{\circ}}{\sin 30^{\circ}}$
$\mu=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$
$v=\frac{c}{\mu}=\frac{3 \times 10^{8}}{\sqrt{3}}$
$v=\sqrt{3} \times 10^{8} \mathrm{~ms}^{-1}$
40. A luminous point object $O$ is placed at a distance $2 R$ from the spherical boundary separating two transparent media of refractive indices $n_{1}$ and $n_{2}$ as shown, where $R$ is the radius of curvature of the spherical surface. If $n_{1}=\frac{4}{3}, n_{2}=\frac{3}{2}$ and $R=10 \mathrm{~cm}$, the image is obtained at a distance from $P$ equal to

A) 30 cm in the rarer medium
B) 30 cm in the denser medium
C) 18 cm in the rarer medium
D) 18 cm in the denser medium

Ans: A)
$\frac{n_{2}}{v}-\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{R}$
$\frac{3}{2 v}+\frac{4}{3(2 R)}=\frac{\frac{3}{2}-\frac{4}{3}}{R}$
$\frac{3}{2 v}+\frac{2}{30}=\frac{9-8}{60}$
$\frac{3}{2 v}=\frac{1}{60}-\frac{1}{15}$

# CREATI'VE LEARNING CLASSES KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code : B3

## THELEADER

$\frac{3}{2 v}=-\frac{3}{60}$
$v=-30 \mathrm{~cm}$
'-ve' means image at object side.
41. An equiconvex lens of radius of curvature 14 cm is made up of two different materials. Left half and right half of vertical portion is made up of material of refractive index 1.5 and 1.2 respectively as shown in the figure. If a point object is placed at a distance of 40 cm , calculate the image distance.

A) 25 cm
B) 50 cm
C) 35 cm
D) 40 cm

Ans: D)
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$\frac{1}{v}=\frac{1}{u}+\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$=\frac{1}{u}+\left(n_{1}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\left(n_{2}-1\right)\left(\frac{1}{R_{1}^{\prime}}-\frac{1}{R_{2}^{\prime}}\right)$
$=\frac{1}{-40}+(1.5-1)\left(\frac{1}{14}-\frac{1}{\infty}\right)+(1.2-1)\left(\frac{1}{\infty}-\frac{1}{-14}\right)$
$\frac{1}{v}=\frac{1}{-40}+(0.5) \frac{1}{14}+(0.2) \frac{1}{14}$
$=-\frac{1}{40}+\frac{1}{14}(0 \cdot 7)$
$\frac{1}{v}=0.025$
$v=+40 \mathrm{~cm}$
42. A galaxy is moving away from the Earth so that a spectral line at 600 nm is observed at 601 nm . Then the speed of the galaxy with respect to the Earth is
A) $500 \mathrm{~km} \mathrm{~s}^{-1}$
B) $50 \mathrm{~km} \mathrm{~s}^{-1}$
C) $200 \mathrm{~km} \mathrm{~s}^{-1}$
D) $20 \mathrm{~km} \mathrm{~s}^{-1}$

## DETAILED SOLUTIONS

Ans : A) [Out of Syllabus - Doppler effect]
$\Delta \lambda=601-600=1 \mathrm{~nm}$

$$
\begin{aligned}
& \frac{v}{c}=\frac{\Delta \lambda}{\lambda} \Rightarrow v=\frac{3 \times 10^{8} \times 1 \times 10^{-9}}{600 \times 10^{-9}} \\
& v=0.005 \times 10^{8} \\
& v=5 \times 10^{5} \\
& v=500 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& v=500 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

43. Three polarised sheets are co-axially placed as indicated in the diagram. Pass axes of the polaroids 2 and 3 make $30^{\circ}$ and $90^{\circ}$ with pass axis of polaroid sheet. If $I_{0}$ is the intensity of the intensity unpolarised light entering sheet 1 , the intensity of the emergent light through sheet 3 is

A) Zero
B) $\frac{3 I_{0}}{32}$ FOUNDATION
C) $\frac{3 I_{0}}{8} \mathrm{DRI}(R)$
D) $\frac{3 \mathrm{I}_{0}}{16}$

Ans: B)
$I_{1}=\frac{I_{0}}{2}$
$I_{2}=\frac{I_{0}}{2} \times \cos ^{2} 30^{0}=\frac{I_{2}}{2}\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{8} I_{0}$
$I_{3}=\left(\frac{3}{8} I_{0}\right) \cos ^{2} 60^{0}=\frac{3}{8} I_{0}\left(\frac{1}{2}\right)^{2}$
$I_{3}=\frac{3}{32} I_{0}$

Sapthagiri Campus, Kanangi Road, Hirgana - 576117
Sub: Physics
Version Code: B3
THELEADER

## DETAILED SOLUTIONS

44. In Young's double slit experiment an electron beam is used to produce interference fringes of width $\beta_{1}$. Now the electron beam is replaced by a beam of protons with the same experiment set up and same speed. The fringe width obtained is $\beta_{2}$. The correct relation between $\beta_{1}$ and $\beta_{2}$ is
A) $\beta_{1}=\beta_{2}$
B) No fringes are formed
C) $\beta_{1}<\beta_{2}$
D) $\beta_{1}>\beta_{2}$

Ans: D)
$\lambda=\frac{h}{m v}$
$\lambda_{e} \propto \frac{1}{m_{e}}$
$\lambda_{p} \propto \frac{1}{m_{p}}$
Since $m_{p}>m_{e}, \lambda_{p}<\lambda_{e}$. Fringe width $\beta \propto \lambda$
$\beta_{1}>\beta_{2}$
45. Light of energy E falls normally on a metal of work function $\frac{E}{3}$. The kinetic energies $(\mathrm{K})$ of the photo electron are
A) $K=\frac{2 E}{3}$
B) $K=\frac{E}{3}$
C) $0 \leq K \leq \frac{2 E}{3}$
D) $0 \leq K \leq \frac{E}{3}$

Ans: A)
$E=\varnothing+K$
$\mathrm{E}=\mathrm{E} / 3+\mathrm{K}$
EDUCATION FOUNDATION MOODBIDRI (R)
$\mathrm{K}=\mathrm{E}-\mathrm{E} / 3$
$K=2 \mathrm{E} / 3$
46. The photoelectric work function for photo metal is 2.4 eV . Among the four wavelengths, the wavelength of light for which photo emission does not take place is
A) 200 nm
B) 300 nm
C) 700 nm
D) 400 nm

Ans: C)
$\phi=2.4 \mathrm{eV}, \lambda=$ ?
$\phi=\frac{h c}{\lambda}$
$\lambda_{0}=\frac{h c}{\emptyset}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{2.4 \times 1.6 \times 10^{-19}}$

Sapthagiri Campus, Kanangi Road, Hirgana - 576117

## DETAILED SOLUTIONS

$\lambda_{0}=\frac{19.8 \times 10^{-26}}{3.84 \times 10^{-19}}=5.156 \times 10^{-26+19}=5.156 \times 10^{-2}$
$\lambda_{0}=515 \mathrm{~nm}$
The threshold wavelength for the photo emission is 515 nm .
Therefore, for the wavelength greater than the threshold wavelength the photo emission is not possible.
47. In alpha particle scattering experiment, if v is the initial velocity of the particle, then the distance of closest approach is d. If the velocity is doubled, then the distance of closest approach becomes
A) $4 d$
B) 2 d
C) $\frac{d}{2}$
D) $\frac{d}{4}$

Ans: D)
We know that, $d \propto \frac{1}{v^{2}}$
Then, $\mathrm{v}^{2} \propto \frac{1}{d}$
When $\mathrm{v}=2 \mathrm{v}$, then
$(2 v)^{2} \propto \frac{1}{d^{\prime}}$
(2) $\div(1)$
$\frac{4 v^{2}}{v^{2}}=\frac{d}{d^{\prime}}$
$d^{\prime}=\frac{d}{4}$
48. The ratio of area of first excited state to ground state of orbit of hydrogen atom is
A) $1: 16$
B) $1: 4$
C) $4: 1$
D) $16: 1$

Ans: D)
We know that $\mathrm{r} \propto n^{2}$
$\Rightarrow r^{2} \propto n^{4}$
$\Rightarrow A_{1} \propto n_{1}{ }^{4}$
$A_{0} \propto n_{0}{ }^{4}$
$\frac{A_{1}}{A_{0}}=\frac{2^{4}}{1^{4}}=\frac{16}{1}$
49. The ratio of volume of $\mathrm{Al}^{27}$ nucleus to its surface area is (Given $\mathrm{R}_{0}=1.2 \times 10^{-15} \mathrm{~m}$ )
A) $2.1 \times 10^{-15} \mathrm{~m}$
B) $1.3 \times 10^{-15} \mathrm{~m}$
C) $0.22 \times 10^{-15} \mathrm{~m}$
D) $1.2 \times 10^{-15} \mathrm{~m}$

Ans: D)
$R=R_{0} \times(A)^{\frac{1}{3}}=1.2 \times 10^{-15} \times 27^{1 / 3}=3.6 \times 10^{-15} \mathrm{~m}$
Then the ratio of volume to surface area is given by

Sapthagiri Campus, Kanangi Road, Hirgana - 576117

## DETAILED SOLUTIONS

$\frac{\frac{4}{3} \pi R^{3}}{4 \pi R^{2}}=\frac{R}{3}$
$\frac{3.6 \times 10^{-15}}{3}=1.2 \times 10^{-15} \mathrm{~m}$
50. Consider the nuclear fission reaction
${ }_{0}^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+3{ }_{0}^{1} n$
Assuming all the kinetic energy is carried away by the fast neutrons only and total binding energies of ${ }_{92}^{235} \mathrm{U},{ }_{56}^{144} \mathrm{Ba}$ and ${ }_{36}^{89} \mathrm{Kr}$ to be $1800 \mathrm{MeV}, 1200 \mathrm{MeV}$ and 780
MeV respectively, the average kinetic energy carried by each fast neutron is (in MeV )
A) 200
B) 180
C) 67
D) 60

Ans: D)

$$
\begin{aligned}
3 K_{\text {neutron }} & =\left(B E_{v}-B E_{B a}-B E_{K r}\right) \\
& =(1800-1200-780) \mathrm{MeV} \\
\left|K_{\text {neutron }}\right| & =\frac{180}{3} \mathrm{MeV}=60 \mathrm{MeV}
\end{aligned}
$$

51. The natural logarithm of the activity $R$ of a radioactive sample varies with time $t$ as shown At $t=0$, there are $N_{0}$ undecayed nuclei. Then $N_{0}$ is equal to [Take $e^{2}=7.5$ ]

A) 7,500
B) 3,500
C) 75,000
D) $1,50,000$

Ans : C) [Out of Syllabus - Radio activity]

$$
\begin{aligned}
& R=R_{0} e^{-\lambda t} \\
& \ln (R)=\ln \left(R_{0} \cdot e^{-\lambda t}\right)
\end{aligned}
$$

## DETAILED SOLUTIONS

$\Rightarrow \ln (R)=\ln \left(R_{0}\right)+\ln \left(e^{-\lambda t}\right)$
$\Rightarrow \ln (R)=2-\lambda t-------(1)$
At $t=10 \times 10^{3} s, \ln (R)=1 \Rightarrow 1=2-\lambda\left(10^{4}\right) \Rightarrow 10^{4} \lambda=1$
$\Rightarrow \lambda=\frac{1}{10^{4}}$
Using $R_{0}=\lambda N_{0}$
$\Rightarrow \ln \left(R_{0}\right)=\ln \left(\lambda N_{0}\right) \Rightarrow 2=\ln \left(\frac{1}{10^{4}} N_{0}\right) \Rightarrow e^{2}=\frac{1}{10^{4}} N_{0} \Rightarrow N_{0}=e^{2}\left(10^{4}\right)$
$=7.5(10000)=75,000$
52. Depletion region in an unbiased semiconductor diode as a region consisting of
A) Both free electrons and holes
B) neither free electrons nor holes
C) Only free electrons
D) only holes

Ans: B)
Depletion layer does not consist of free electrons and holes.
53. The upper level of valence band and lower level of conduction band overlap in the case of
A) Silicon
B) copper
C) carbon
D) germanium

Ans: B)
In semiconductor and insulator, the two bands are separated by a band gap, while in education foundation moodmidre (r) conductors the bands overlap.
54. In the diagram shown, the Zener diode has a reverse breakdown voltage of $\mathrm{V}_{\mathrm{z}}$. The current through the load resistance $\mathrm{R}_{\mathrm{L}}$ is $\mathrm{I}_{\mathrm{L}}$. The current through the Zener diode is

A) $\frac{V_{O}-V_{Z}}{R_{S}}$
B) $\frac{V_{O}-V_{Z}}{R_{L}}$
C) $\frac{V_{Z}}{R_{L}}$
D) $\left(\frac{V_{O}-V_{z}}{R_{S}}\right)-I_{L}$

# CrEATIVVE LEARNING CLASSES KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117

## DETAILED SOLUTIONS

## Ans : D) [Out of Syllabus - Zener Diode]


$I=\frac{V_{0}-V_{z}}{R_{S}}$
$I=I_{z}+I_{L}$
$I_{z}=I-I_{L}$
$I_{z}=\left(\frac{V_{0}-V_{z}}{R_{S}}\right)-I_{L}$
55. A p-n junction diode is connected to a battery of emf 5.7 V in series with a resistance $5 \mathrm{k} \Omega$ such that it is forward biased. If the barrier potential of the diode is 0.7 V , neglecting the diode resistance, the current in the circuit is
A) 1.14 mA
B) 1 mA
C) 1 A
D) 1.14 A

Ans: B)

$\mathrm{Emf}=5.7 \mathrm{~V}$
$\mathrm{R}=5 \mathrm{k} \Omega$
Barrier potential $=0.7 \mathrm{~V}$
$i=\frac{5.7-0.7}{5 \times 10^{3}}$
$i=\frac{5}{5 \times 10^{3}}$
$i=10^{-3} \mathrm{~A}$
$i=1 m A$

# CREATIVVE LEARNING CLASSES KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117

## DETAILED SOLUTIONS

56. A block of certain mass is placed on a rough inclined plane. The angle between the plan and the horizontal is $30^{\circ} \mathrm{C}$. The coefficients of static and kinetic frictions between the block and the inclined plane are 0.6 and 0.5 respectively. Then the magnitude of the acceleration of the block is [Take $g=10 \mathrm{~ms}^{-2}$ ]

A) $2 \mathrm{~ms}^{-2}$
B) zero
C) $0.196 \mathrm{~ms}^{-2}$
D) $0.67 \mathrm{~ms}^{-2}$

Ans: B)
$\mu=\tan \theta$
$\theta=\tan ^{-1} \mu$
$=\tan ^{-1} 0.6$
$\theta \approx 31^{0}$
$\therefore$ angle of inclination is less than angle of repose, thus no sliding is experienced as the acceleration becomes 0 .
57. A particle of mass 500 g is at rest. It is free to move along a straight line, The power delivered to the particle varies with time according to the following graph: The momentum of the particle at $\mathrm{t}=5 \mathrm{~s}$ is

A) $2 \sqrt{5} \mathrm{Ns}$
B) $5 \sqrt{2} \mathrm{Ns}$
C) 5 Ns
D) 5.5 Ns

## DETAILED SOLUTIONS

Ans: C)
By work-energy theorem,
$K . \mathrm{E}_{\mathrm{f}}-\mathrm{K} . \mathrm{E}_{\mathrm{i}}=\mathrm{W}$
$\frac{p^{2}}{2 m}-0=W$
$p=\sqrt{2 m W}$
Where work done is given as, $\mathrm{W}=$ area of trapezium
$=\frac{1}{2} \times b \times\left(h_{1}+h_{2}\right)$
$=\frac{1}{2} \times 5 \times(2+8)$
$=25 \mathrm{~J}$
$p=\sqrt{25 \times 2 \times 0.5}$
$p=5 N s$
58. Dimensional formula for activity of a radioactive substance is
A) $\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
B) $\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}$
C) $\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
D) $\mathrm{M}^{-1} \mathrm{~L}^{0} \mathrm{~T}^{0}$

## Ans: C) [Out of Syllabus - Radio Activity]

Since, $A=-\frac{d N}{d t}$
Where $\mathrm{N}=$ No. of disintegration oundation moodmidr (R)
Thus, dimensional formula is $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
59. An athlete runs along a circular track of diameter 80 m . The distance travelled and the magnitude of displacement of the athlete when he covers $\frac{3}{4}$ th of the circle is (in m )
A) $60 \pi, 40 \sqrt{2}$
B) $40 \pi, 60 \sqrt{2}$
C) $120 \pi, 80 \sqrt{2}$
D) $80 \pi, 120 \sqrt{2}$

Ans: A)
Radius $=40 \mathrm{~m}$
Distance travelled is, $=3 / 4 \times 2 \pi r=3 / 4 \times 2 \pi(40 \mathrm{~m})=60 \pi$
Displacement is given as from $A$ to $B$
$A B=\sqrt{A O^{2}+B O^{2}}=\sqrt{40^{2}+40^{2}}=40 \sqrt{2}$

# CREATIVIV LEARNING CLASSES KARKALA 

Sapthagiri Campus, Kanangi Road, Hirgana - 576117

## DETAILED SOLUTIONS

60. Among the given pair of vectors, the resultant of two vectors can never be 3 units. The vectors are
A) 1 unit and 2 units
B) 2 units and 5 units
C) 3 units and 6 units
D) 4 units and 8 units

Ans: D)
Possible resultant vector lie between $\vec{R}=\vec{A}+\vec{B}$ or $\vec{R}=\vec{A}-\vec{B}$
Thus $\vec{R}=4+8=12$ units
$\vec{R}=4-8=4$ units
Thus, resultant vector lies between 4 to 12 , it does not has 3 in it.
$* * * * *$

## DEPARTMENT OF PHYSICS

CREATIVE EDUCATION FOUNDATION MOODBIDRI (R)
Website : www.creativeedu.in
Phone No. : 9019844492
EDUCATION FOUNDATION MOODBIDRI (R)

